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ON THE MULTIFRACTAL PROPERTIES OF PASSIVELY
CONVECTED SCALAR FIELDS

J. KALDA

Institute of Cyberentics, TTU, Akadeemia tee 21, 12618 Tallinn, Estonia
E-mail: kaldagioc.ee

Multifractal spectra are derived for 1- and 2-dimensional cross-sections of passively
convected scalar fields; 2- and 3-dimensional single-scale velocity fields in the ab-
sence of KAM surfaces are considered. Both the Kraichnan model and real flows
with non-zero correlation time are studied. The calculation of fc(a)-curves is based
on the probability density function of the stretching factors of fluid elements. It
is shown that strict multifractality holds only for small values of a. New multi-
fractal scalar field - "harmfulness"- is suggested to describe the propagation of
environmentally dangerous substances.

Keywords: Turbulent diffusion, passive scalar, intermittence, multifractality.

1 Introduction

The convection of passive scalar by chaotic fluid flow has been studied intensively

during the last decades. Special attention has been paid to the analysis of the
intermittent structure of scalar fields 18. The scalar density correlation properties
have been found to be very far from Gaussian; a clear evidence for this is the
multifractal structure of scalar dissipation fields 1-4

Most of the theoretical studies have been based on the Kraichnan model ., in

which case the velocity field is assumed to be delta correlated in time. Despite of
being very idealized, this model is far from trivial and is widely believed to repro-
duce the most important features of the real passive scalar turbulence. However,
this rigorous approach has still been unable to relate the multifractal spectrum
f(a) directly to the correlation functions of the velocity field. The main tool for
the multifractal analysis has been the generalized Baker map model [which has been
also used to calculate the probability density function (PDF) of largest Lyapunov
exponents] 2,3. Recently, new approach has been suggested for the multifractal
analysis of the passive scalar dissipation field, which is based on a simple equation
describing the stretching of fluid elements 9. In Sections 2 and 3 we extend the
approach to three-dimensional geometry. In Section 4, we define new scalar fields,
which are based on the density of the passive scalar, and show that they have also

multifractal structure. When the convecting velocity field is oceanic or atmospheric
motion, and the passive scalar is an environmentally harmful substance, these fields
can be treated as the measures describing the potential damage to the environment.

The parameters of our model equations are defined by the statistical properties
of the velocity field. In the case of delta-correlation in time (Kraichnan model),
they are directly expressed via the correlation functions. The model is in good'
agreement with the earlier experimental and theoretical results.
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2 Basic equation

The convective diffusion of a passive scalar ¢ is described by the following equation:

H0 + v. V0 = KV2 + g.

Here g is a source of passive scalar and K - the molecular diffusivity. We consider
a chaotic isotropic single-scale incompressible velocity field v(r, t) in the absence
of KAM surfaces. Single-scale field is defined as a field for which the Fourier
spectrum is constrained into one octave of wavelengths. The characteristic space-

scale is chosen to be the unit length. We consider large Peclet number limit, K <
(lvi) and moderate time-scale. More precisely, we assume that the convection
has created small-scale structures, but the smallest created scales are still longer
than the dissipation scale v/H, i.e. t < - In c/2y, where -y is the average value of
the largest Lyapunov exponent of the velocity field. Then, the stretching of fluid
elements and the evolution of passive scalar gradients are related to each other
4,6,10-13 We study the case when there is no source of dye, and at the initial
moment t = 0, there was a uniform gradient of dye concentration,

g - 0, V Olt=0 = ex, (2)

where ex is the unit vector along x-axis.
With the given assumptions and for 2-dimensional velocity field, the problem

of finding the PDF of passive scalar gradients is directly equivalent to the problem
of finding the PDF of stretching factors of fluid elements p(r, t) = exp(h+t) cos V,
where h+ is the largest Lyapunov exponent and W - the angle between the re-
spective eigenvector and a fluid element 9. Indeed, neglecting the seed diffusiv-
ity, at a fixed fluid particle, the modulus of the dye gradient IV01 scales like the
length of an infinitesimal fluid element Sr (t), initially perpendicular to the gradient
[Jr(O) I_ V0(0)]: Ik(t)I cc Ihr(t)j. This is due to the incompressibility of the fluid:
the fluid parallelogram defined by initially perpendicular vectors &r(t) and Jr_ (t)
preserves its area JS = IJr(t)i. IIrI(t)I sina, where a is the angle between the vec-
tors. On the other hand, at the fixed fluid particle, the dye concentration remains
unchanged and j5r_L(t)I sin a o IVOV-1 . Thus, with the proper choice of units and
in the absence of seed diffusivity, the stretching factors p = 1Ir(ro, t)i / 1jr(ro, 0)1
and dye gradients are equivalent to each other. The strict equivalence holds for the
fluid elements, initially parallel to the isolines of 0(r, 0); however, statistically the
initial orientation of the fluid elements becomes irrelevant.

Three-dimensional geometry can be treated in a similar way, then the PDF of
dye gradients is equivalent to the distribution of stretching factors of fluid surfaces.
The argumentation is completely analogous and based on the evolution of fluid
parallelepipeds.

The multifractal analysis is based on simple diffusion-convection equation, de-
scribing the distribution of fluid elements l(p) and fluid surfaces s(p) over the
stretching factor p. We derive it both for the Kraichnan model and for velocity
fields of finite correlation time. First we consider the case of real velocity fields of
finite correlation time r. The correlation time is used as the unit time, i.e. 7- = 1.
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Let us define l(p, t)dp as the average total length of those pieces of a fluid line,
for which p G [p, p + dp] (the length is reduced to the initial length of the fluid line
L 0 ). Then, the PDF of stretching factors and dye gradients is given by p-il(p). We
consider time increments At = 1, and study the change of the state of fluid elements
(fluid surfaces); we neglect the correlation in time for time-scales longer than T = 1.
Let p(q)dq denote the probability of stretching a fluid element by a factor of q. Then
we can write l(p, t + 1)dp = f p(q)l(p/q, t)d(p/q)qdq, or, introducing a = lnp and
A (a, t) = l(exp a, t),

A(o't + 1) = JA(o - lnq, t)p(q)dq. (3)

In the case of 3D velocity fields, the same equation describes the evolution of fluid
surfaces, with A(o-, t) = s(exp a, t). However, for a fixed velocity field, the stretching
of fluid elements and surfaces are characterized by different functions p(q).

The initial condition (2) implies that the dye gradients are initially delta-
distributed. Therefore, in order to keep the equivalence between the stretching
coefficients and dye gradients, the initial condition for Eq. (3) should be written as

A (0, 0) = 6(a). (4)

This system can be solved by applying the Fourier transform \(f, t) =
f A(a, t) exp(-ifu)da. As a result we obtain

A(f, t) = l(f)t f(f) =/Jp(exp q) exp(q - if q)dq. (5)

On the long-time limit, the inverse Fourier transform can be taken via the saddle-
point method:

A (0 2 F/tOaf 2 )- 1 /2 exp{F[fo(h), h]t}.

Here we have denoted h =ojt, F(f, h) = ln[f_'o p(exp q) exp(q + fq)dq] - fh, and
fo(h) stands for the solution to the equation OF/Of = 0. This result has the same
form as that of obtained for the PDF of largest Lyapunov exponents p(hm, t) via
generalized Baker map model 3. It should be stressed that although the functions
\(h) and p(hm, t) have similar meaning, they are in fact distinct, even asymptot-
ically at t -4 oo. This is caused by the contribution of fluid elements, almost
perpendicular to the eigenvector of the largest Lyapunov exponent. Note that the
function F[fo(h), h] is defined by the correlation properties of the velocity field.
For a typical localized correlation function p(k), function F(f, h) grows linearly at
f -4 ±oo. Consequently, fo(h) is defined only for a finite range of the values of
h. Outside of that region, A =_ 0. This is quite a natural result: for real non-
Kraichnan flows with finite amplitude of velocity fluctuations, the stretching rate
of a fluid element cannot be arbitrarily fast.

For Kraichnan flows and for real flows on the long-time limit, Eq. (5) can be
further simplified. Indeed, on long-time limit, the function A(a) has a smooth
profile made up of long-wave-length Fourier components. Thus, the function H(f)
can be expanded into power series, where only the two first terms are kept, 11(f)
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-iuf - Df 2 . Here u and D are constants depending on the statistical properties
of the velocity field:

u= p(k) lnkdk, D= f p(k)(lnk)2dA. (6)

Further, the discrete increments become relatively small and can be replaced by
time derivative. Then, Eq. (3) can be rewritten as

aA aA _02 A
t- + U- D (7)

For the Kraichnan model, this is the exact result, which can be obtained via

the Fourier transform of the expression A(u, t) = (6[a - In 16r(t)1]). Here &r(t) =

6r(O) exp(ft Vvdt'), and the limit t --+ 0 is to be studied. Then H(f) -= -iuf -Df 2 ,

with

uS~t - t' d- I- ([V" (t) + V"r(t)] [V" (t,) + V" (t')])(8Jt - t') = 4 (8
DS(t - t') = ½ (v,.(t)vrr(t')),

where indices r and T denote the components of the tensor Vv, and d = 2,3 is the
dimensionality of the space. For 3-dimensional stretching of fluid surfaces, A(O, t) =

(6[o, - In S5S(t)I]), where 5S(t)2 = 6r,(t)2 5r 2 (t) 2 - [6r,(t) . 5r 2 (t)] 2 , and Sr1, 2 (t) =

6rl,2 (0) exp(ft Vvdt'). Unlike in the case of finite correlation time flows, the values
of u and D for 3-dimensional stretching of fluid surfaces are equal to the respective
values for fluid elements. This is caused by two circumstances: first, the relevant
infinitesimal increments of fluid elements satisfy the incompressibility condition;
second, only the symmetric components of the stress tensor are involved. Typically,
the stretching of fluid elements is defined by the largest Lyapunov exponent A+
(except for small fraction of fluid elements, almost perpendicular to the eigenvector).
The stretching of fluid surfaces is governed by the sum A+ + A0 , where A0 is the
intermediate-valued Lyapunov exponent. Thus, the statistical equality of the two
stretching coefficients means that the average value of A0 is zero. Finally we note
that in the case of the Kraichnan model, the time is measured in arbitrary units,

because the correlation time T = 0.

3 Multifractality of the passive scalar dissipation field

The passive scalar dissipation field, created by turbulent jet has been found to

exhibit a multifractal structure 1. This experimental finding has been addressed
in several theoretical studies 2-4. The analytic results confirm the presence of a
multifractal structure. The stretching-coefficient-based approach has been used to
calculate the multifractal spectrum f(a) for two-dimensional velocity field 9. Here
we extend this approach to 3-dimensional geometry.

Throughout this section, A(o-, t) will be treated as the PDF of dye gradients,

i.e. a = In IVOI. We consider the initial conditions (2), which is equivalent to (4).
Bearing this in mind, Eq. (7) can be immediately solved,

A = (7rDt)- 1 / 2 exp [(U-ut)2] (9)I- Dt I (9
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This expression allows us to derive the multifractal spectrum. It is convenient to
make use of the pattern formed by fluid curves (or fluid surfaces - for 3-dimensional
geometry), which were originally straight lines (plane surfaces), separated by unit
length, and perpendicular to the gradient of the dye concentration. Note that the
idea of studying a fluid line evolution has been used to calculate the Kolmogorov
entropy in 2-dimensional quasi-stationary flow 14

Experimentally, the multifractality has been observed on 1- and 2-dimensional
cross-sections of the 3-dimensional dissipation field 1. Here we shall study 1 and
2-dimensional cross-sections of 2- and 3-dimensional dissipation fields. We start
with 1-dimensional cross-sections, particularly we consider the dependence of the
local value of o on the coordinate ý along the cross-section. First we note that
the characteristic fluctuation amplitude of the dye concentration is 1. Indeed,
when the fluid lines (or fluid surfaces) evolve, they will be folded; typically, the
density variations of the order of unity are embraced between two approaching
each other pieces of the curve. Thus, on the cross-section, the characteristic scale
of dye density variations is 6 z. 1/iV~I ý- exp(-u). The small-scale variations
of the function o,() are described by the same scale. However, the function o,(()
exhibits long-range correlations, as well, because two close each other pieces of
a fluid curve are stretched in a similar way. It can be argued that in rescaled

coordinates ( = f• ' exp[a(o')]d<', function o,(() is a random Brownian function.
Indeed, the distance A( between two fluid particles gives us the estimate, how
long (i.e. how many durations of the correlation time) has been that time-period,
when these points evolved in an uncorrelated manner. During each correlation
time, a fluid element is randomly stressed or stretched leading to the change Aa
±1. Therefore, A( gives us the estimate, how many times are the fluid elements
independently stressed or stretched.

Further, the multifractal structure of 1-dimensional cross-sections of 2- and 3-
dimensional dissipation fields can be easily analyzed. The overall scalar dissipation

in a region [•, • + r], r < 1 can be estimated as Wr(6) = f+ KIVOI2d6 ý. Kk2

Kk,, where k, is the maximal value of IVVbI over the given region, and 60 = 1/kr.
In order to determine the multifractal spectrum f(a), we need to calculate the
probability

p(r, a) oc ri-f() (10)

that the normalized dissipation w,(ý) = W (6)/WI(ý) scales as ci-th power of r, i.e.
Wr C [r', 2r']. Substituting the estimate Wr(6) : rkr, we obtain Wr(ý)/WI(6)
kr/kj. Then, the probability (10) can be calculated as

r L(po)r, L(po)r < 1
p(r,ci) = exp[-L(po)r], L(po)r» 1 , = kor•; (11)

where L(po) = f0o l(p)dp is the overall length [for 3-dimensional velocity field, this

is the overall surface L(po) = f~o s(p)dp] per unit area of those parts of the fluid

curves (fluid surfaces), which are stretched more than a prefixed factor Po. Indeed,
L(po) is the estimate for the number, how many times a cross-section of unit length
is intersected by the fluid curves (fluid surfaces in 3D geometry) of stretching factor
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p > po. According to (9),

L= exp u+D) t1 [-erfo°+(u+--D/2)t] (12)

where uo = Inpo. At large values of cro, the asymptotics of Eq. (12) is given by L
exp[-(oo + ut) 2/Dt - oo][1 + 2(oo + ut)/Dt]-1; substituting uo = -al In rI + In kOl
we obtain

p(r,a) z rl- (13)

Here we have also substituted the value of ki, which has been calculated by noting
that p(1, a) p 1.

In its strict sense, multifractality assumes that p(r, a) is a power law of
r. According to Eq. (13), this is valid only for small values of a, a <K

Dt /1 + 4u/D/I ln(ro)I, where ro is the smallest considered space scale. In that
case, expressions (10) and (13) yield

f(a) = ce/1 + 4u/D. (14)

It should be stressed that this expression assumes Lr <K 1, and hence f(a) $ý 1.
On the other hand, slight deviations from multifractality in its strict sense may
remain unnoticed when performing numerical schemes of obtaining multifractal

spectra. Bearing this in mind, it makes sense to calculate the "effective" multifractal
spectrum f(a), which might be obtained in experiments:

(f(a)) ln[p(ro, a)/ro]/Ilnrol. (15)

f(a)

0.8

0.6

0.4

0.2

0

-0.2
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 1. "Effective" multifractal spectrum (f (a)), defined by expressions (11), (12) and (15);
u t 0.2, D • 0.35, ro : 0.01, tzý 30.
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Further, we consider 2-dimensional cross-sections of 3-dimensional dissipation
field. The cross-sections of the fluid surfaces are curves; in what follows, they will be
referred to as "stripes". The variations of the dye gradient are highly anisotropic:
the characteristic scale across the "stripes" is previously given by J Z exp(-U)
and is typically defined by the smallest Lyapunov exponent h-. Meanwhile, the
characteristic scale along the "stripes" is much longer and is either defined by the
intermediate-valued Lyapunov exponent h0 (if h0 < 0), or is of the order of unity
(if h0 > 0). The easiest way to obtain the f(a)-curve is to consider 1-dimensional
cross-sections of the 2-dimensional field. The fractal dimension of the intersection
of two fractal objects is given by Dn = D1 + D 2 - D, where D1 and D 2 are the
dimensionalities of the objects, and D is the topological dimension of the embedding
space 15. Before applying this relationship, it should be pointed out that on 1-
and 2-dimensional cross-sections, the same physical points correspond to different
values of a. Indeed, on 1-dimensional cross-sections, the normalized dissipation
was estimated as kl/kl. For 2-dimensional geometry, the striped patterns lead to
the estimate wr • rkl/kl r'. By comparing 1- and 2-dimensional expressions
for kr/kl (expressed via r and a), one can see that 1-dimensional a corresponds
to 2-dimensional a - 1 [this correspondence is based on an implicit assumption
that the intermediate-valued Lyapunov exponent is not very small, hot > - ln(ro)].
Therefore, f(a) curves are related by the equality f2(a) = 1 + fi(a - 1). Then,
expression (14) leads to f 2 (a) = 1 + (a - 1) V1 + 4u/D.

Finally we note that the curve defined by expressions (11), (12) and (15) is
quite similar to the experimental curves, which have been obtained for the passive
scalar dissipation in turbulent jet 1. The leftmost part of the curve is linear, f ox a;
this is the only part of the curve corresponding to a strict multifractality. Further,
there is a rapid [according to Eq. (11) exponential] fall-off at the large values of
a. Exact shape is not reproduced, because expression (11) has been obtained
for two asymptotic limits; at the intermediate values of a, the assessment is very
rough. Reasonable resemblance between the experimental 1 and theoretical curves
is achieved for the following numerical values: u z 0.2, D z 0.35, r0 ; 0.01, t ý. 30
(see figure).

4 The measure of "harmfulness".

The convective diffusion is a phenomenon, which will appear in vast number of
situations. One of the most important aspects is the mixing of harmful substances
in natural environment. These substances may have been delivered as a result of
an accident, or as technological wastes; the convecting medium may be oceanic or
atmospheric motion. In most cases, the overall amount of the substance is rela-
tively small, so that after complete mixing, there is no danger to the environment.
Meanwhile, at the moderate (under-mixing) timescale, there are clumps of the sub-
stance; biological objects may become damaged, when hit by these clumps. It is
not obvious, how to measure the harmfulness of this scalar field. The measures
based on the moments of the scalar density are not suited. Indeed, at the under-
mixing timescale, the seed diffusivity can be neglected, and one can use the reduced
description, where the local state of the medium is given by one bit of information:
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the substance is present ('1') or absent ('0'). The local average of the scalar con-
centration is also useless. This becomes evident, when we consider the evolution
of a striped pattern. Due to the incompressibility of the velocity field, the average
concentration of the dye will be quasi-homogeneous: in those places, where the
stretching factor is high, the stripe becomes very thin; at the same time, it will be
approached by another piece of stripe, so that the amount of dye per unit volume
will remain unchanged.

Intuitively it is clear that the quantity which does matter, is the size of the
blob of dye. Thus, we define new scalar field X(r, t) as the radius of the sphere,
which is completely immersed into the dye, and the center of which is at the given
point. This field - or an n-th power of it yn(r, t) - can be taken as the measure
for the harmfulness of the admixture. While X0 (r, t) ("zero order harmfulness")
is essentially equivalent to the dye concentration itself and is distributed quasi-
homogeneously, all the other moments reveal multifractal structure.

In order to study the multifractality of the "harmfulness", we follow the ap-
proach of Section 3. Thus, we consider 1-dimensional cross-sections of the scalar
field. For the sake of simplicity, let us study only 2-dimensional velocity field (3-
dimensional geometry can be handled in the same way, as in the case of dissipation
field). Suppose that initially, the stripes of dye of width c were straight lines sep-
arated by unit distance. Then, the total n-th order "harmfulness" over a region of
size r is estimated as Hn f+r Xnd O k'hr , where k, is the smallest value
of IVVA. Note that this estimate is valid for n > 0 (actually, for n not too close to
1), because we have taken into account only the contribution of the largest blob of
dye in the given region. Strictly speaking, the sum should have been taken over all
the blobs. However, just like in the case of dissipation fields, for n > 0, the sum is
dominated by the largest term. Further, the multifractal spectrum of dissipation
fields was derived using the overall length per unit area L of those parts of the fluid
curve, which were stretched more than a prefixed factor. Here we have a symmetric
situation: the main contribution to the "harmfulness" is made by those parts of the
stripes, which have small stretching factors. Therefore, the probability p(r, a) can
be assessed by the same formula (11) as in the case of dissipation fields; the only
modification is that L should be substituted by L - the length of those parts of the
stripes, which are stretched less than kr,-/(n+,) times. Following the procedure
of obtaining Eq. (14), we result in

a /1
S= + 1 + 4u/D. (16)

Note that while the multifractality described by Eq. (14) is caused by the "right-
hand tail" of the Gaussian distribution function (9) - i.e. by the fall-off at a -- +0o
- the multifractality of the "harmfulness" is due to the left-hand Gaussian tail.
Therefore, it is not surprising that Eqns. (14) and (16) are very similar to each
other.

5 Conclusions

We have introduced the concept of "harmfulness", which addresses the problem
of environmental damage caused by technological wastes. We have shown that in
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the case of passive scalar turbulence, both the multifractality of the dissipati
field and "harmfulness" are caused by uneven stretching of fluid elements. For
multifractality of the dissipation field, this is a known result 2,4. The advantaF
the approach based on Eq. (7) is its simplicity, which made it possible to calct
the f(a)-curves. Eq. (7) can be also used to study the other aspects of pa,,
scalar turbulence. Thus, it has been modified to take into account the non-
molecular diffusivity 9. In such a way, it was possible to address the problen
stationary 1/k power spectrum, and exponential decay of the dye fluctuatior
the case of initially seeded dye. However, it seems that the approach canno
extended to study the PDF of dye gradients in the presence of non-zero diffusP
the dye gradients are affected by the coherence between the existing patterns
the patterns formed by diffusing dye.
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